Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27496, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486750

RESUMO

Copper, a vital trace element, orchestrates diverse cellular processes ranging from energy production to antioxidant defense and angiogenesis. Copper metabolism and cuproptosis are closely linked in the context of human diseases, with a particular focus on cancer. Cuproptosis refers to a specific type of copper-mediated cell death or copper toxicity triggered by disruptions in copper metabolism within the cells. This phenomenon encompasses a spectrum of mechanisms, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and perturbations in metal ion equilibrium. Mechanistically, cuproptosis is driven by copper binding to the lipoylated enzymes within the tricarboxylic acid (TCA) cycle. This interaction participates in protein aggregation and proteotoxic stress, ultimately culminating in cell death. Targeting copper metabolism and its associated pathways in cancer cells hold therapeutic potential by selectively targeting and eliminating cancerous cells. Strategies to modulate copper levels, enhance copper excretion, or interfere with cuproptotic pathways are being explored to identify novel therapeutic targets for cancer therapy and improve patient outcomes. Understanding the relationship between cuproptosis and copper metabolism in human malignancies remains an active area of research. This review provides a comprehensive overview of the association among copper metabolism, copper homeostasis, and carcinogenesis, explicitly emphasizing the cuproptosis mechanism and its implications for cancer pathogenesis. Additionally, we emphasize the therapeutic aspects of targeting copper and cuproptosis for cancer treatment.

2.
Cell Commun Signal ; 22(1): 196, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539200

RESUMO

Polyploidy is typically described as the condition wherein a cell or organism has more than two complete sets of chromosomes. Occurrence of polyploidy is a naturally occurring phenomenon in the body's development and differentiation processes under normal physiological conditions. However, in pathological conditions, the occurrence of polyploidy is documented in numerous disorders, including cancer, aging and diabetes. Due to the frequent association that the polyploidy has with these pathologies and physiological process, understanding the cause and consequences of polyploidy would be beneficial to develop potential therapeutic applications. Many of the genetic and epigenetic alterations leading to cancer, diabetes and aging are linked to signaling pathways. Nonetheless, the specific signaling pathway associated with the cause and consequences of polyploidy still remains largely unknown. Mammalian/mechanistic target of rapamycin (mTOR) plays a key role in the coordination between eukaryotic cell growth and metabolism, thereby simultaneously respond to various environmental inputs including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in the regulation of many fundamental cellular processes that range from protein synthesis to autophagy. Dysregulated mTOR signaling has been found to be implicated in various disease progressions. Importantly, there is a strong correlation between the hallmarks of polyploidy and dysregulated mTOR signaling. In this review, we explore and discuss the molecular connection between mTOR signaling and polyploidy along with its association with cancer, diabetes and aging. Additionally, we address some unanswered questions and provide recommendations to further advance our understanding of the intricate relationship between mTOR signaling and polyploidy.


Assuntos
Diabetes Mellitus , Neoplasias , Animais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias/genética , Neoplasias/metabolismo , Poliploidia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mamíferos/metabolismo
3.
Cancer Lett ; 587: 216704, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360138

RESUMO

Despite significant advancements in prevention and treatment, colorectal cancer (CRC) remains the third leading cause of cancer-related deaths. Animal models, including xenografts, syngeneic, and genetically engineered, have emerged as indispensable tools in cancer research. These models offer a valuable platform to address critical questions regarding molecular pathogenesis and test therapeutic interventions before moving on to clinical trials. Advancements in CRC animal models have also facilitated the advent of personalized and precision medicine. Patient-derived xenografts and genetically engineered mice that mirror features of human tumors allow for tailoring treatments to specific CRC subtypes, improving treatment outcomes and quality of life. To overcome the limitations of individual model systems, recent studies have employed a multi-modal approach, combining different animal models, 3D organoids, and in vitro studies. This integrative approach provides a comprehensive understanding of CRC biology, including the tumor microenvironment and therapeutic responses, driving the development of more effective and personalized therapeutic interventions. This review discusses the animal models used for CRC research, including recent advancements and limitations of these animal models.


Assuntos
Neoplasias Colorretais , Camundongos , Humanos , Animais , Neoplasias Colorretais/patologia , Qualidade de Vida , Modelos Animais de Doenças , Microambiente Tumoral
4.
Sci Rep ; 14(1): 4404, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388663

RESUMO

Prostate cancer (PCa) progression leads to bone modulation in approximately 70% of affected men. A nutraceutical, namely, α-lipoic acid (α-LA), is known for its potent anti-cancer properties towards various cancers and has been implicated in treating and promoting bone health. Our study aimed to explore the molecular mechanism behind the role of α-LA as therapeutics in preventing PCa and its associated bone modulation. Notably, α-LA treatment significantly reduced the cell viability, migration, and invasion of PCa cell lines in a dose-dependent manner. In addition, α-LA supplementation dramatically increased reactive oxygen species (ROS) levels and HIF-1α expression, which started the downstream molecular cascade and activated JNK/caspase-3 signaling pathway. Flow cytometry data revealed the arrest of the cell cycle in the S-phase, which has led to apoptosis of PCa cells. Furthermore, the results of ALP (Alkaline phosphatase) and TRAP (tartrate-resistant acid phosphatase) staining signifies that α-LA supplementation diminished the PCa-mediated differentiation of osteoblasts and osteoclasts, respectively, in the MC3T3-E1 and bone marrow macrophages (BMMs) cells. In summary, α-LA supplementation enhanced cellular apoptosis via increased ROS levels, HIF-1α expression, and JNK/caspase-3 signaling pathway in advanced human PCa cell lines. Also, the treatment of α-LA improved bone health by reducing PCa-mediated bone cell modulation.


Assuntos
Neoplasias da Próstata , Ácido Tióctico , Masculino , Humanos , Ácido Tióctico/farmacologia , Caspase 3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
5.
Phytother Res ; 38(3): 1509-1521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272848

RESUMO

Gum arabic/acacia (GA), derived from Acacia trees, is a versatile natural product offering a broad spectrum of applications. Its rich content of soluble dietary fibers, coupled with a low caloric profile, renders GA a valuable dietary component associated with numerous health benefits. Furthermore, its fermentation by gut microbiota yields short-chain fatty acids, renowned for their positive impact on health. Immunomodulation, a crucially regulated mechanism in the body, serves to fend off pathogenic infections by releasing pro-inflammatory cytokines. However, prolonged synthesis of these cytokines can lead to chronic inflammation, tissue damage, and potentially contribute to the development of autoimmune diseases and cancer. Hence, there is an urgent need to identify plant-based biomolecules that can effectively reduce inflammation and inhibit inflammation-induced complications or disorders. In this context, edible biomolecules like GA are gaining prominence for their noteworthy immunomodulatory properties. Therefore, in the present review we have explored the role of GA in immunomodulation, inflammation, and inflammation-associated metabolic diseases, and cancer.


Assuntos
Acacia , Neoplasias , Humanos , Goma Arábica/farmacologia , Inflamação , Fibras na Dieta , Citocinas
6.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662255

RESUMO

Gut microbiota plays a crucial role in inflammatory bowel disease (IBD) and has therapeutic benefits. Thus, targeting the gut microbiota is a promising therapeutic approach for IBD treatment. We recently found that red cabbage juice (RCJ) ameliorates dextran sulfate sodium (DSS)-induced colitis in mice. However, the underlying mechanisms remain unknown. The current study investigated the modulation of gut microbiota in response to treatment with RCJ to ameliorate the DSS colitis. The initial results demonstrated that mice treated with DSS + RCJ showed increased body weight and decreased diarrhea and blood in feces compared to the DSS alone group. RCJ ameliorated colitis by regulating the intestinal barrier function by reducing the number of apoptotic cells, improving colonic protective mucin, and increasing tight junction protein in RCJ + DSS groups compared to the DSS group. Short-gun metagenomic analysis revealed significant enrichment of short-chain fatty acid (SCFAs)-producing bacteria (Butyrivibrio, Ruminococcaceae, Acetatifactor muris, Rosburia Sp. CAG:303 , Dorea Sp. 5-2) increased PPAR-© activation, leading to repression of the nuclear factor κB (NFκB) signaling pathway, thus decreasing the production of crucial inflammatory cytokines and chemokines in the RCJ + DSS groups compared to the DSS group. Pathway abundance analysis showed an increased abundance of the SCFA pathway, reduced histidine degradation ( Bacteroides sartorii, and Bacteroides caecimuris ), and LCFA production in the RCJ+DSS treated group, suggesting the promotion of good colonic health. Furthermore, increased T-reg (FOXP3+) cells in the colon were due to SCFAs produced by the gut microbiota, which was corroborated by an increase in IL-10, a vital anti-inflammatory cytokine. Thus, our study provides the first evidence that RCJ ameliorates colonic inflammation by modulating the gut microbiota.

7.
Gut Microbes ; 15(1): 2187578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36919486

RESUMO

The human gut microbiota can be potentially disrupted due to exposure of various environmental contaminants, including pesticides. These contaminants enter into non-target species in multiple ways and cause potential health risks. The gut microbiota-derived metabolites have a significant role in maintaining the host's health by regulating metabolic homeostasis. An imbalance in this homeostasis can result in the development of various diseases and their pathogenesis. Pesticides have hazardous effects on the host's gut microbiota, which is evident in a few recent studies. Therefore, there is an urgent need to explore the effect of pesticide on gut microbiota-mediated metabolic changes in the host, which may provide a better understanding of pesticide-induced toxicity. The present review summarizes the pesticide-induced effects on gut microbiota, which in turn, induces changes in the release of their secondary metabolites that could lead to various host health effects.


Assuntos
Microbioma Gastrointestinal , Praguicidas , Humanos , Praguicidas/toxicidade
8.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203712

RESUMO

Gut microbiota plays a crucial role in inflammatory bowel diseases (IBD) and can potentially prevent IBD through microbial-derived metabolites, making it a promising therapeutic avenue. Recent evidence suggests that despite an unclear underlying mechanism, red cabbage juice (RCJ) alleviates Dextran Sodium Sulfate (DSS)-induced colitis in mice. Thus, the study aims to unravel the molecular mechanism by which RCJ modulates the gut microbiota to alleviate DSS-induced colitis in mice. Using C57BL/6J mice, we evaluated RCJ's protective role in DSS-induced colitis through two cycles of 3% DSS. Mice were daily gavaged with PBS or RCJ until the endpoint, and gut microbiota composition was analyzed via shotgun metagenomics. RCJ treatment significantly improved body weight (p ≤ 0.001), survival in mice (p < 0.001) and reduced disease activity index (DAI) scores. Further, RCJ improved colonic barrier integrity by enhancing the expression of protective colonic mucins (p < 0.001) and tight junction proteins (p ≤ 0.01) in RCJ + DSS-treated mice compared to the DSS group. Shotgun metagenomic analysis revealed an enrichment of short-chain fatty acids (SCFAs)-producing bacteria (p < 0.05), leading to increased Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) activation (p ≤ 0.001). This, in turn, resulted in repression of the nuclear factor κB (NFκB) signaling pathway, causing decreased production of inflammatory cytokines and chemokines. Our study demonstrates colitis remission in a DSS-induced mouse model, showcasing RCJ as a potential modulator for gut microbiota and metabolites, with promising implications for IBD prevention and treatment.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Homeostase
9.
Biotechnol Rep (Amst) ; 34: e00720, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35686016

RESUMO

Clove oil has a high eugenol content, making it an effective antimicrobial essential oil; nevertheless, its low water solubility, high volatility, and organoleptic qualities limit its use in food systems. As a result, we created an antibacterial system using clove oil-in-water nanoemulsion. Clove oil nanoemulsions were produced using whey protein concentrate (0.1-1%) as an emulsifier by ultrasonication and various physico-chemical characteristics (stability, particle size, zeta-potential, and poly dispersity index) were investigated. Mean particle size, zeta potential and polydispersity index of the most stable nanoemulsion were 279.0 ± 8.43 nm, -34.5 ± 0.12 mV, and 0.179 ± 0.012, respectively. Most stable nanoemulsion was fairly stable at different processing parameters such as various pH (3.0 - 7.0), temperature ranges (63 - 121 °C), and ionic strengths (0.1 - 1.0 M NaCl). Finally, antimicrobial activities, such as minimum inhibitory concentration was found with 50 µL, whereas minimum bactericidal concentration was observed to be 90 µL after 8 h contact time, against E. coli and B. subtilis strains.

10.
Cancer Lett ; 536: 215664, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35351601

RESUMO

Despite technological advances in diagnostic abilities and improved treatment methods, the burden of cancers remains high, leading to significant morbidity and mortality. One primary reason is that cancer cell secretory factors modulate the tumor microenvironment, supporting tumor growth and circumvents anticancer activities of conventional therapies. Macrophage inhibitory cytokine-1 (MIC-1) is a pleiotropic cytokine elevated in various cancers. MIC-1 regulates various cancer hallmarks, including sustained proliferation, tumor-promoting inflammation, avoiding immune destruction, inducing invasion, metastasis, angiogenesis, and resisting cell death. Despite these facts, the molecular regulation and downstream signaling of MIC-1 in cancer remain elusive, partly because its receptor (GFRAL) was unknown until recently. Binding of MIC-1 to GFRAL recruits the coreceptor tyrosine kinase RET to execute its downstream signaling. So far, studies have shown that GFRAL expression is restricted to the brain stem and is responsible for MIC-1/GFRAL/RET-mediated metabolic disorders. Nevertheless, abundant levels of MIC-1 expression have been reported in all cancer types and have been proposed as a surrogate biomarker. Given the ubiquitous expression of MIC-1 in cancers, it is crucial to understand both upstream regulation and downstream MIC-1/GFRAL/RET signaling in cancer hallmark traits.


Assuntos
Fator 15 de Diferenciação de Crescimento/metabolismo , Neoplasias , Citocinas/genética , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Macrófagos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fenótipo , Transdução de Sinais , Microambiente Tumoral
11.
Aging (Albany NY) ; 14(5): 2025-2046, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255004

RESUMO

Mucins are components of the mucus layer overlying the intestinal epithelial cells, which maintains physiological homeostasis. Altered mucin expression is associated with disease progression. Expression of MUC4 decreases in colorectal cancer (CRC); however, its functional role and implications in the intestinal pathology in CRC are not studied well. Therefore, we generated a genetically engineered Muc4 knockout (Muc4-/-) CRC mouse model by crossing with Muc4-/- and Apcflox/flox mice in the presence of colon-specific inducible Cre. We observed that deficiency of Muc4 results in an increased number of macroscopic tumors in the colon and rectal region and leads to poor survival. Further, the absence of Muc4 was associated with goblet cell dysfunction where the expression of intestinal homeostasis molecules (Muc2 and Fam3D) was downregulated. Next, we also observed that loss of Muc4 showed reduced thickness of mucus layer, leading to infiltration of bacteria, reduction in anti-microbial peptides, and upregulation of pro-inflammatory cytokines. Further, Apc gene mutation results in activation of the Wnt/ß-catenin signaling pathway that corroborated with an increased nuclear accumulation of ß-catenin and activation of its target genes: cyclin D1 and c-Myc in Muc4-/- mice was observed. We conclude that the presence of Muc4 is essential for intestinal homeostasis, reduces tumor burden, and improves overall survival.


Assuntos
Neoplasias Colorretais , Mucina-4/metabolismo , Animais , Neoplasias Colorretais/patologia , Citocinas , Homeostase , Camundongos , Mucina-4/genética , Via de Sinalização Wnt/genética
12.
Semin Cancer Biol ; 86(Pt 3): 457-472, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35124194

RESUMO

Chemokines are well equipped with chemo-attractive signals that can regulate cancer cell trafficking to specific organ sites. Currently, updated concepts have revealed the diverse role of chemokines in the biology of cancer initiation and progression. Genomic instabilities and alterations drive tumor heterogeneity, providing more options for the selection and metastatic progression to cancer cells. Tumor heterogeneity and acquired drug resistance are the main obstacles in managing cancer therapy and the primary root cause of metastasis. Studies emphasize that multiple chemokine/receptor axis are involved in cancer cell-mediated organ-specific distant metastasis. One of the persuasive mechanisms for heterogeneity and subsequent events is sturdily interlinked with the crosstalk between chemokines and their receptors on cancer cells and tissue-specific microenvironment. Among different metastatic niches, skeletal metastasis is frequently observed in the late stages of prostate, breast, and lung cancer and significantly reduces the survival of cancer patients. Therefore, it is crucial to elucidate the role of chemokines and their receptors in metastasis and bone remodeling. Here, we review the potential chemokine/receptor axis in tumorigenesis, tumor heterogeneity, metastasis, and vicious cycle in bone microenvironment.


Assuntos
Neoplasias Ósseas , Quimiocinas , Masculino , Humanos , Quimiocinas/metabolismo , Receptores de Quimiocinas/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Transformação Celular Neoplásica , Microambiente Tumoral/genética
13.
Bone Res ; 10(1): 6, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058441

RESUMO

Bone metastases occur in patients with advanced-stage prostate cancer (PCa). The cell-cell interaction between PCa and the bone microenvironment forms a vicious cycle that modulates the bone microenvironment, increases bone deformities, and drives tumor growth in the bone. However, the molecular mechanisms of PCa-mediated modulation of the bone microenvironment are complex and remain poorly defined. Here, we evaluated growth differentiation factor-15 (GDF15) function using in vivo preclinical PCa-bone metastasis mouse models and an in vitro bone cell coculture system. Our results suggest that PCa-secreted GDF15 promotes bone metastases and induces bone microarchitectural alterations in a preclinical xenograft model. Mechanistic studies revealed that GDF15 increases osteoblast function and facilitates the growth of PCa in bone by activating osteoclastogenesis through osteoblastic production of CCL2 and RANKL and recruitment of osteomacs. Altogether, our findings demonstrate the critical role of GDF15 in the modulation of the bone microenvironment and subsequent development of PCa bone metastasis.

14.
Cytokine Growth Factor Rev ; 64: 71-83, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34836750

RESUMO

Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor ß superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.


Assuntos
Fator 15 de Diferenciação de Crescimento , Neoplasias , Caquexia/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Neoplasias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Microambiente Tumoral
15.
Cancer Metastasis Rev ; 40(3): 721-738, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591244

RESUMO

Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.


Assuntos
Biologia Computacional , Neoplasias Pancreáticas , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Prognóstico
16.
Gut Microbes ; 13(1): 1974795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34586012

RESUMO

An imbalance in the crosstalk between the host and gut microbiota affects the intestinal barrier function, which results in inflammatory diseases and colorectal cancer. The colon epithelium protects itself from a harsh environment and various pathogenic organisms by forming a double mucus layer, primarily comprising mucins. Recent studies are focusing on how dietary patterns alter the gut microbiota composition, which in turn regulates mucin expression and maintains the intestinal layers. In addition, modulation of gut microbiota by microbiotic therapy (involving fecal microbiota transplantation) has emerged as a significant factor in the pathologies associated with dysbiosis. Therefore, proper communication between host and gut microbiota via different dietary patterns (prebiotics and probiotics) is needed to maintain mucus composition, mucin synthesis, and regulation. Here, we review how the interactions between diet and gut microbiota and bacterial metabolites (postbiotics) regulate mucus layer functionalities and mucin expression in human health and disease.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Mucinas/metabolismo , Probióticos/administração & dosagem , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucinas/genética , Prebióticos/análise
17.
Cancer Lett ; 510: 79-92, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-33878394

RESUMO

Despite preclinical success, monotherapies targeting EGFR or cyclin D1-CDK4/6 in Head and Neck squamous cell carcinoma (HNSCC) have shown a limited clinical outcome. Here, we aimed to determine the combined effect of palbociclib (CDK4/6) and afatinib (panEGFR) inhibitors as an effective strategy to target HNSCC. Using TCGA-HNSCC co-expression analysis, we found that patients with high EGFR and cyclin D1 expression showed enrichment of gene clusters associated with cell-growth, glycolysis, and epithelial to mesenchymal transition processes. Phosphorylated S6 (p-S6), a downstream effector of EGFR and cyclin D1-CDK4/6 signalling, showed a progressive increase from normal oral tissues to leukoplakia and frank malignancy, and associated with poor outcome of the patients. This increased p-S6 expression was drastically reduced after combination treatment with afatinib and palbociclib in the cell lines and mouse models, suggesting its utiliy as a prognostic marker in HNSCC. Combination treatment also reduced the cell growth and induced cell senescence via increasing reactive oxygen species with concurrent ablation of glycolytic and tricarboxylic acid cycle intermediates. Finally, our findings in sub-cutaneous and genetically engineered mouse model (K14-CreERtam;LSL-KrasG12D/+;Trp53R172H/+) studies showed a significant reduction in the tumor growth and delayed tumor progression after combination treatment. This study collectively demonstrates that dual targeting may be a critical therapeutic strategy in blocking tumor progression via inducing metabolic alteration and warrants clinical evaluation.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Receptores ErbB/antagonistas & inibidores , Humanos , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
18.
Food Res Int ; 141: 110133, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33642000

RESUMO

Iron fortification of staple food is a strategy utilized worldwide to address the concern of dietary iron deficiency. However, traditional salt-based fortification methods have limitations with gastrointestinal stability and bioavailability. Iron chelating peptides from easily available and scalable proteins such as whey protein have been proposed as promising candidates to circumvent the above mentioned limitations by enhancing iron absorption and bioavailability. In this study, we report methods to produce whey protein derived iron-chelating peptides and describe their physicochemical characteristics. Peptides derived from whey proteins prepared by ultrafiltration of whey followed by hydrolysation were iron chelated to produce peptide-iron complexes. These complexes had a size of 422.9 ± 3.41 nm, chelated iron content of 36.42 µg/ mg protein, and a low zeta potential (-10.80 mV) compared to whey peptides. Spectra analysis using ultraviolet-visible absorption and Fourier transform infrared spectroscopy showed structural transformation indicating iron chelation. Mass spectrometric analysis using LC-MS/MS confirmed the presence of both hydrophilic and hydrophobic peptides in the complexes with sizes ranging from 275 Da to 1916 Da. Furthermore, reduction in the antioxidant property of peptides following iron complexing indicates iron chelation. Our results suggest that whey protein derived peptide-iron complexes can be used as a potential alternative for chemical iron fortificants for food products and also as iron supplements.


Assuntos
Ferro , Espectrometria de Massas em Tandem , Cromatografia Líquida , Quelantes de Ferro , Peptídeos , Proteínas do Soro do Leite
19.
Cancer Res ; 81(1): 91-102, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127746

RESUMO

Secreted mucin 5AC (MUC5AC) is the most abundantly overexpressed member of the mucin family during early pancreatic intraepithelial neoplasia stage I (PanIN-I) of pancreatic cancer. To comprehend the contribution of Muc5ac in pancreatic cancer pathology, we genetically ablated it in an autochthonous murine model (KrasG12D; Pdx-1cre, KC), which mirrors the early stages of pancreatic cancer development. Neoplastic onset and the PanIN lesion progression were significantly delayed in Muc5ac knockout (KrasG12D; Pdx-1 cre; Muc5ac-/-, KCM) animals with a 50% reduction in PanIN-2 and 70% reduction in PanIN-3 lesions compared with KC at 50 weeks of age. High-throughput RNA-sequencing analysis from pancreatic tissues of KCM animals revealed a significant decrease in cancer stem cell (CSC) markers Aldh1a1, Klf4, EpCAM, and CD133. Furthermore, the silencing of MUC5AC in human pancreatic cancer cells reduced their tumorigenic propensity, as indicated by a significant decline in tumor formation frequency by limiting dilution assay upon subcutaneous administration. The contribution of MUC5AC in CSC maintenance was corroborated by a significant decrease in tumor burden upon orthotopic implantation of MUC5AC-depleted pancreatic cancer cells. Mechanistically, MUC5AC potentiated oncogenic signaling through integrin αvß5, pSrc (Y416), and pSTAT3 (Y705). Phosphorylated STAT3, in turn, upregulated Klf4 expression, thereby enriching the self-renewing CSC population. A strong positive correlation of Muc5ac with Klf4 and pSTAT3 in the PanIN lesions of KC mouse pancreas reinforces the crucial involvement of MUC5AC in bolstering the CSC-associated tumorigenic properties of Kras-induced metaplastic cells, which leads to pancreatic cancer onset and progression. SIGNIFICANCE: This study elucidates that de novo expression of MUC5AC promotes cancer cell stemness during Kras-driven pancreatic tumorigenesis and can be targeted for development of a novel therapeutic regimen.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Mucina-5AC/fisiologia , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biol Open ; 9(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32709695

RESUMO

Pancreatic cancer (PC) is acquired postnatally; to mimic this scenario, we developed an inducible KrasG12D; Ptf1a-CreER™ (iKC) mouse model, in which Kras is activated postnatally at week 16 upon tamoxifen (TAM) administration. Upon TAM treatment, iKC mice develop pancreatic intraepithelial neoplasia (PanIN) lesions and PC with metastasis at the fourth and fortieth weeks, respectively, and exhibited acinar-to-ductal metaplasia (ADM) and transdifferentiation. Kras activation upregulated the transcription factors Ncoa3, p-cJun and FoxM1, which in turn upregulated expression of transmembrane mucins (Muc1, Muc4 and Muc16) and secretory mucin (Muc5Ac). Interestingly, knockdown of KrasG12D in multiple PC cell lines resulted in downregulation of MUC1, MUC4, MUC5AC and MUC16. In addition, iKC mice exhibited ADM and transdifferentiation. Our results show that the iKC mouse more closely mimics human PC development and can be used to investigate pancreatic ductal adenocarcinoma (PDAC) biomarkers, early onset of PDAC, and ADM. The iKC model can also be used for preclinical strategies such as targeting mucin axis alone or in combination with neo-adjuvant, immunotherapeutic approaches and to monitor chemotherapy response.


Assuntos
Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Mucinas/genética , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia , Tamoxifeno/efeitos adversos , Animais , Biomarcadores , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Expressão Gênica , Imuno-Histoquímica , Camundongos , Mucinas/metabolismo , Família Multigênica , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...